摘要

在不同的光照环境下,对电梯曳引轮的磨损量进行非接触式测量时存在误差较大这一问题,为此,提出了一种基于改进DeepLabV3的曳引轮磨损自动测量算法。首先,构建了曳引轮绳槽的物理模型,基于采集到的曳引轮绳槽图片,建立了曳引轮绳槽数据集;然后,采用融合SEnet和ECAnet双注意力机制的DeepLabV3s模型,对数据集进行了训练,实现了钢丝绳与曳引轮的分类目标;提出了一种融合曳引轮图像特征的图像处理算法,用相关匹配法识别并截取了目标区域,定位到磨损点,并计算了其磨损量;最后,为了对上述算法的性能进行验证,搭建了测量实验平台,进行了算法的鲁棒性验证和误差分析实验。实验结果表明:采用该算法进行测量所得绝对误差小于0.049 mm,均方根误差小于0.044 mm,且算法运行时间小于2.50 s。研究结果表明:与传统测量方法相比,该自动测量方法具有高精度、自动化、非接触的特点,能适应不同光照环境,快速、准确地测量曳引轮绳槽的磨损量,解决了不同光照环境下的曳引轮磨损非接触式测量问题。