摘要
对于PAD(pleasure:愉悦度;arousal:唤醒度;dominance:优势度)维度情感预测和分析中的数值预测问题,结合心率变异性(heart rate variability, HRV)特点,提出了基于主成分分析(principal component analysis, PCA)和支持向量回归(support vector regression, SVR)的PAD维度情感预测模型(PCA-SVR)。通过柔性离子传感器以音乐和视频的诱导方式采集了12名志愿者在放松和焦虑两种情感状态下的心率和心率间期数据,利用PAD量表进行标注,通过均值和方差计算等统计方法、Welch功率谱、Poincaré散点图等分别提取HRV的时域、频域和非线性特征,然后利用PCA模型对HRV特征降维,最后利用降维后的HRV特征作为SVR模型的输入特征进行训练和预测。实验结果表明,结合HRV特征的PCA-SVR模型在PAD的3个维度上均有良好的预测效果,其平均一致性相关系数达到了0.51。同时对比了SVR、极限学习机(extreme learning machine, ELM)和基于PCA的ELM这3种预测方法,结果显示所提方法相对于以上3种方法在一致性相关系数上分别提升了0.14、0.10和0.04,表明该方法能够细致地划分情感,结合可穿戴设备,在情感识别和分析方面有一定补充作用,为在日常生活中针对情感的识别和预测带来了可能。
- 单位