摘要
评估并监控图像质量是数字图像处理技术的基础工作。客观图像质量评价(IQA)旨在通过计算机开发与人眼视觉感知密切相关的算法。本文充分模拟人眼视觉系统(HVS)和大脑机制,提出了一种新的基于机器学习的全参考型图像质量评价模型CGDR。该模型融合了图像的色度特征、梯度特征、对比敏感度函数(CSF)特征以及Gauss差分(DOG)频带特征。其中,改进后的梯度算法不仅包含更丰富的相邻信息和多方向边缘信息,同时强调了参考图像和失真图像的边缘相关性。在三个基准图像数据库上的实验结果表明,CGDR的预测性能优于八种主流方法,跨数据库测试体现出其强大的鲁棒性,预测结果能够与人眼主观感知保持高度一致性。
- 单位