摘要

针对轴承工作过程中早期故障样本少、故障类型不平衡的问题,提出一种基于生成式对抗网络(GAN)的数据增强方法。该方法应用快速傅里叶变换(FFT)对轴承信号进行预处理,然后将频谱作为GAN的输入,生成故障样本数据。最后,将生成的数据与原始数据结合构成新的数据集,并利用支持向量机(SVM)实现故障分类识别。通过轴承实验和统计学特性验证,表明该方法可以生成有效故障样本,同时采用扩充后的新数据集与原始数据集相比诊断准确率更高。

全文