摘要
由于惯性权重取值不合适和迭代后期粒子群体多样性下降,导致传统粒子算法在移动机器人路径规划研究过程中存在局部最优解问题。针对此问题提出了一种改进粒子群算法的移动机器人路径规划方法。首先建立机器人路径规划的栅格地图模型,在此基础上对传统的粒子群算法进行了改进。随后,引入了基于相似度概念的非线性动态惯性权值调整方法,从而使得粒子的更新速率能够适配寻优过程的各个阶段,并且通过引入免疫算法中的免疫信息调节机制,增加了粒子的多样性,增强了其摆脱局部最优值的能力。仿真结果表明,所提出的改进粒子群算法具有更高的最佳路径搜索能力,其综合性能显著优于传统的粒子群算法。
-
单位上海大学; 自动化学院