摘要
对基于点云神经网络的局部形状特征匹配模型进行对抗攻击,有益于评估并提高其对抗鲁棒性.针对上述问题,提出了3种基于对抗点的攻击方法,包括通过移动原始待匹配局部点云中点的坐标进行对抗点扰动;计算局部点云的显著图,通过添加点到显著图中关键点的位置并施加位移进行对抗点添加;通过将显著图中的关键点移动到形状中心位置进行对抗点删除.在3DMatch数据集上针对DIP模型和SpinNet模型的实验结果表明, 3种攻击方法均能实现有效攻击;攻击的效果与所设置的扰动大小有关;在保证隐蔽性的前提下,随着扰动的增大,攻击效果逐渐显著,如DIP模型被攻击后的特征匹配召回率可从100%降低至2%.
- 单位