摘要

针对智能仓储中AGV避障问题,提出了一种使用激光雷达识别AGV前方障碍物类别的方法,以便结合障碍物位置信息辅助AGV做出合理的决策.首先,将激光雷达数据进行滤波、聚类,得到纯度高的聚类簇;然后,通过提出的特征提取方法提取得到特征向量;最后,使用粒子群优化算法(PSO)在训练集上寻找径向基核(RBF)支持向量机(SVM)的最优参数,并训练得到模型.该方法在智能仓储模拟环境的数据集上测试,准确度达到了94.58%,可以准确、有效地对AGV前方障碍物进行识别.