摘要

随着医学技术不断发展,人们对肿瘤图像的分割要求日益提高,为了满足临床需要,提高医学图像分割的准确性,提出了一种基于梯度主动轮廓和第二代离散曲波变换(Discrete Curvelet Transform,以下简称:DCUT)的医学图像分割算法。该算法首先对医学数据进行离散曲波变换,获取增强后的医学数据,再利用Canny算子和形态学运算进行边缘检测,对处理后的数据利用梯度主动轮廓模型确定病灶区域的轮廓。本文选取了297组医学图像进行验证,实验结果表明:医学图像经过本算法处理后,边缘检测性能由传统算法的88.95%达到96.03%,分割位置的准确性得到进一步提高,目标边缘和轮廓提取更加清晰、稳定,有效提高了医学图像分割精确性。

全文