摘要

低剂量单光子发射型断层扫描(Single-Photon Emission Computed Tomography,SPECT)能够减少放射性示踪剂对人体的辐射损害,因此其临床应用变得愈发重要。SPECT扫描可通过投影角度稀疏采样实现低剂量成像;若直接对稀疏采样投影数据进行迭代重建,投影角度的缺失将导致重建图像中出现严重的射线伪影。现今主流的临床方法普遍在图像重建优化模型中引入特定的正则项以抑制射线伪影,然而该类方法不具有通用性,并且正则项过度依赖于经验选取。本文提出一种新颖的神经网络结构以学习稀疏采样投影数据与全角度采样投影数据之间的映射关系;通过所提网络结构合成缺失角度的投影数据,来提升重建图像的质量。数值实验表明,相较于传统迭代重建方法,论文重建方法所得图像的结构相似性(Structural Similarity, SSIM)提高了59%,标准均方误差(Normalized Mean-SquareError, NMSE)降低了67%,峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)提高了2.48 d B。因此,所提方法能较好地改善稀疏采样投影数据成像后的图像质量。