摘要
高分辨率地震数据在地震数据处理中扮演着关键角色,特别是当地震勘探目标变得越来越复杂时,它可以提供更准确的储层识别和描绘。近年来,随着深度学习技术的快速发展,它越来越多地被引入到高分辨率地震数据处理中。基于大量标记数据,建立了低分辨率地震数据和高分辨率地震数据之间的复杂非线性关系。然而,深度学习在高分辨率数据处理中的精度与稳定性高度依赖于训练集的准确性与多样性。深度学习技术在生产中实际应用的主要挑战之一是稀疏的井数据,这经常导致训练集受限。为了解决这个问题,本文提出了一种基于深度学习的高分辨率处理方法,通过使用大量逼真的训练集,将井数据所表示的分层结构与地震数据所表示的空间地质结构相结合。建立训练集包括三个步骤:(1)使用井数据计算波阻抗序列,并利用高斯匹配函数拟合波阻抗高频部分的振幅分布,得到一个概率密度函数,最后生成一系列符合井数据统计分布的波阻抗序列。(2)在波阻抗序列的基础上,建立二维水平分布的波阻抗模型,并逐步添加折叠变形、倾角变形和断层变形,生成包含各种地质模式的二维阻抗模型。(3)使用阻抗模型计算反射系数,然后用反射系数模型分别卷积低频和高频子波,得到训练集。通过自动生成具有地下地质信息的大量训练集,训练的网络可以估计稳定而准确的高分辨率结果。深度学习的框架由两个部分组成:提取输入数据特征的编码部分和通过提取的特征重建输出的解码部分。此外,残差模块被整合到框架中,使网络更有效地从训练集中提取特征进而提高网络性能,从而实现计算精度和效率之间更好的平衡。通过模型数据和实际数据的测试,本文提出的方法相比于传统深度学习方法对噪声具有更好的鲁棒性,可以产生更精确且横向连续性更好的高分辨率结果。
-
单位中国石油大学(北京); 东方地球物理勘探有限责任公司; 油气资源与探测国家重点实验室