摘要
针对“阶跃式”滑坡位移时序分解模型力学解释性不强的缺陷,根据西原蠕变本构模型与自适应改进遗传算法模型,提出滑动Rnl阶跃点检测方法与改进加权移动平均修正阶跃项位移方法,并将该方法应用于白水河滑坡位移时序分解。将滑动Rnl阶跃点检测结果与MK检验结果、滑动t检验结果以及Bayes检测结果作对比。结果表明,滑动Rnl阶跃点检测结果更加准确与适用;同时将新型滑坡位移时序分解结果与二次移动平均时序分解结果、三次指数平滑时序分解结果以及VMD时序分解结果作对比。结果表明,新型滑坡位移时序分解方法解决了滑坡趋势项位移无规律、无力学解释性的问题,且在时序分解加法模式中单独引入滑坡位移预测中最重要的阶跃项位移,分析预测更具有针对性。因此,新型时序分解模型有一定的工程价值与时序预测借鉴价值。
- 单位