摘要
为提高免套袋苹果分级效率,最小化果梗与花萼对缺陷区分的影响,提出了一种基于机器学习的免套袋苹果缺陷分级方法,该方法根据缺陷的数量和面积进行缺陷程度分级。获取免套袋苹果3个不同侧面的图像,利用固定阈值分割和形态学方法提取每个图像的苹果区域。根据苹果表面缺陷在HSV(Hue saturation value,色调、饱和度、明度)颜色空间的特征提取疑似缺陷区域,用种子填充法按序标记疑似缺陷区域,并计算每个区域的大小及灰度共生矩阵特征值。将特征值输入训练后的SVM(Support vector machine,支持向量机)模型,进行果梗、花萼与缺陷的区分,计算当前图像的缺陷数量与面积,再计算苹果3个不同侧面图像的总缺陷数量与面积,实现免套袋苹果缺陷分级。结果显示,正常区域、果梗区域、花萼区域在SVM模型中的分类正确率分别为96.7%、93.3%、88.3%。利用该缺陷分级方法对60个苹果进行分级的正确率为90.0%,满足苹果分级的实际生产需求。
- 单位