摘要
用户建模是推荐系统中的一项基本任务,传统的方法使用协同过滤(CF)建模用户的潜在兴趣,但用户的兴趣往往是复杂多样且会随时间而变化,单一的模型无法准确建模用户的兴趣特征,针对此问题,本文提出一种新的自适应融合用户长短期兴趣的混合推荐模型(NHRec).该模型根据用户的历史信息,利用融合注意力机制的门控循环单元(GRU)建模用户的短期兴趣,兼顾时序信息和内容上的相关性,同时采用卷积神经网络(CNN)对用户的全局信息进行提取得到用户长期兴趣,并使用基于时间间隔信息的自适应方式融合两类兴趣进行推荐计算.实验结果表明,提出的推荐算法NHRec相较于目前比较流行的推荐算法表现出更为优越的推荐性能.
- 单位