摘要
目的 针对金属工件表面小尺寸缺陷检测精度低的问题,提出以YOLOv5网络为基础,结合注意力机制与Ghost卷积的表面缺陷检测算法。方法 首先,在原网络中增加SE通道注意力模块,增加缺陷有关信息的权重,减少无用特征的干扰,从而提高目标的检测精度。然后,将网络中空间金字塔池化模块的池化方式由最大池化替换为软池化,使得在下采样激活映射中保留更多的特征信息,获得更好的检测精度。最后,采用Ghost卷积块替换主干网络中的常规卷积模块,提取丰富特征及冗余特征,以此提高模型效率。结果 改进后网络平均精度均值达到0.997 8,相比原网络提高了7.07个百分点。结论 该网络显著提高了金属工件表面缺陷检测的精度。
- 单位