摘要
蒙特卡罗树搜索(MCTS)在棋类博弈问题中展现出卓越的性能,但目前多数研究仅考虑胜负两种反馈从而假设博弈结果服从伯努利分布,然而这种设定忽略了常出现的平局结果,导致不能准确地评估盘面状态甚至错失最优动作。针对这个问题,首先构建了基于三元分布的多臂赌博机(TMAB)模型并提出了最优臂确认算法TBBA;然后,将TBBA算法应用到三元极大极小采样树(TMST)中,提出了简单迭代TBBA算法的TBBAtree算法和通过将树结构转化成TMAB的TMST最优动作识别(TTBA)算法。在实验部分,建立了两个精度不同的摇臂空间并在其基础上构造了多个具有对比性的TMAB和TMST。实验结果表明,相比均匀采样算法,TBBA算法准确率保持稳步上升且部分能达到100%,TBBA算法准确率基本保持在80%以上且具有良好的泛化性和稳定性,不会出现异常值和波动区间。
- 单位