摘要
奶牛目标各区域的精细分割和识别能够提供精确的奶牛形体细节信息,是奶牛体形评价、姿态检测、行为分析和理解的前提和基础。为实现深度图像中奶牛头、颈、躯干和四肢等身体区域的精确分割,提出一种基于深度图像特征和机器学习的奶牛目标各区域精细分割方法。该方法以每个像素点在不同采样半径下的带阈值LBP序列为深度特征值,设置分类约束条件,用决策树森林机器学习方法实现奶牛各区域的精细分类。对10头奶牛的288幅侧视深度图像进行试验,结果表明,当采样半径分段数为30,决策树训练至20层时,奶牛整体各像素点的平均识别率为95.15%,较传统深度图像特征值有更强的细节信息提取能力,可以用较少参数实现对复杂结构的精确识别。
-
单位西北农林科技大学; 电子工程学院