摘要
脑-机接口(BCI)系统常用高密度电极通道来获取较高空间分辨率的脑电(EEG)信号,但同时也会引入过多的噪声通道,影响脑电的解码性能。为了消除无关的噪声通道,提出了一种基于Tikhonov正则化共空间模式(TRCSP)和L2范数的运动想象脑电通道选择方法。首先基于TRCSP和分类器得到最优的空间滤波器,接着基于L2范数对空间滤波器得到的各通道的权重值进行排序。选择前K个通道的数据进行CSP特征提取,根据分类器的分类准确率确定最优K值,进而得到最优的通道数和通道组合。在实验中,使用6种分类器分别在BCI竞赛III(2005)数据集IVa和实验室自采集数据上验证所提出的通道选择方法的有效性。所提出的方法在两个数据集上的平均分类准确率分别达到了87.57%和74.32%,优于其它现有的方法。
- 单位