摘要

弹丸发射参数、气象条件等会影响弹丸射程,其构成的影响体系复杂并难以准确预测。针对BP预测算法会因初始权值和阈值取值不当导致陷入局部最优的问题,建立了麻雀搜索算法(Sparrow Search Algorithm, SSA)优化BP神经网络的弹丸射程预测模型,以弹丸射程作为输出指标,选取弹丸初速、发射角度和风力条件作为影响因素输入,经过数据预处理后进行弹丸射程预测;同时与粒子群算法(Particle Swarm Optimization, PSO)和遗传算法(Genetic Algorithm, GA)优化BP神经网络预测模型的预测精度进行对比,验证SSA优化BP神经网络模型的预测效果。结果表明,SSA-BP预测模型的平均绝对误差、均方根误差和平均绝对百分比误差分别为10.4564m、11.8313m和0.05813%,低于BP、PSO-BP、GA-BP预测模型的相应评估指标,所以SSA-BP模型的预测精度高于BP、PSO-BP、GA-BP预测模型,其可以为弹丸射程预测和远程火力打击研究提供支持。

全文