摘要
初始地应力场是地下工程设计与施工的重要依据,在实际工程中难以精准测得,为了能较准确地获得初始地应力场的分布规律,提出将免疫算法与BP神经网络相结合(IA-BP)的算法对初始地应力场进行反演研究。免疫算法优化BP神经网络就是将BP神经网络的连接权值和阈值作为免疫算法中的抗体进行编码。该混合算法既可以利用免疫算法全局寻优的特点快速搜索到全局最优解或次优解附近,又可以采用BP算法避免在最优解和次优解附近发生震荡,对其进行局部优化,从而达到快速收敛全局最优解的目的。通过COMSOL分别构建平面边坡模型及三维立体模型,对其进行正分析计算,将计算的结果作为“实测值”,对地应力进行反演分析,并将IA-BP算法反演的结果与PSO-BP算法及多元线性回归算法的反演结果进行对比。结果表明:二维边坡模型下,IA-BP算法反演结果误差更小。三维模型下,IA-BP算法所得实测值与反演值之间的相对误差的绝对值为0%~10.64%(平均为3.39%),PSO-BP算法所得实测值与反演值之间相对误差的绝对值为0%~48.39%(平均为6.93%),多元线性回归算法所得实测值与反演值之间相对误差的绝对值为0.55%~121.95%(平均为21.87%),通过对比可知,IA-BP算法整体反演结果精度最高。无论是平面模型还是三维模型,利用IA-BP算法反演出的结果与其他两种算法反演的结果相比,误差更小。将IA-BP智能算法运用到地应力场的反演研究中,可以为地下工程的建设提供依据。
-
单位沈阳工业大学; 土木工程学院