摘要
盲源分离较之传统的信号处理方法在处理弱信号问题上更具优势。针对轴承故障诊断中因条件限制仅能进行单通道信号采集的情况,提出了一种基于总体经验模式分解的一维盲源分离算法。算法先通过总体经验模式分解将信号分解为多个本征模态函数,再根据本征模态函数之间的相关系数重组观测矩阵,最后利用近似联合对角化对矩阵进行盲源分离。通过数据仿真将该方法与小波分析和Hilbert-Huang变换作对比,说明该方法更适于处理低信噪比的轴承故障信号。对滚动轴承进行了故障诊断实验,成功找到了表征内圈故障和外圈故障的特征信息。
- 单位