面向单幅图像的逼真3D人脸重建方法

作者:包永堂; 周鹏飞; 齐越*
来源:计算机辅助设计与图形学学报, 2022, 34(12): 1850-1858.
DOI:10.3724/SP.J.1089.2022.19485

摘要

针对3DMM参数拟合方法生成的纹理过于粗糙、结果不够逼真的问题,提出一种基于深度学习的单幅图像逼真3D人脸重建方法.首先构建RP-Net回归网络和包含5万幅人脸图像的数据集,从输入图像中学习参数,并拟合人脸模型生成3D人脸几何;然后通过构造多层次的损失函数进行弱监督学习,包括低水平的像素损失、地标损失和高水平的身份损失;最后通过纹理映射的方式生成逼真的人脸纹理.在2个通用人脸数据集和1个人工生成的人脸数据集上与最近的3D人脸重建方法进行对比实验,并对影响重建的光照、表情和转向等因素进行实验,根据SSIM和PSNR对3D重建结果进行量化分析.实验结果表明,所提方法面向单幅图像可以生成准确的3D人脸形状和逼真的人脸纹理;与最近的3D人脸重建方法相比,该方法的训练时间和迭代次数分别降低了6%和13%,SSIM值增加0.005~0.010, PSNR值平均提高0.03~0.08 dB.

全文