考虑用户兴趣分析的差分隐私方案推荐

作者:耿秀丽*; 王著鑫
来源:计算机应用研究, 2022, 39(02): 474-478.
DOI:10.19734/j.issn.1001-3695.2021.06.0265

摘要

现有差分隐私推荐算法在计算相似度时,直接根据用户—方案数据进行计算,而忽略了方案属性对用户偏好的影响,没有反映用户的真实偏好,不能进行准确推荐。针对此问题,提出考虑用户兴趣分析的差分隐私推荐方法。该方法首先收集用户对方案属性的兴趣评分,其次使用K-means++对用户—方案属性评分数据进行聚类,然后采用差分隐私算法选择近邻用户,并为目标用户推荐适合的方案。最后,以养老院方案推荐为例予以验证。实验结果显示:与KDPC、DPCF、PNCF相比,所提算法在相同隐私预算下,平均绝对误差下降约19.0%、34.0%、37.7%;在相同近邻集合尺寸下,平均绝对误差下降约10.4%、20.3%、21.4%。因此,该算法在保护了用户隐私的基础上,进一步提高了推荐精度。

全文