摘要

针对标准阿基米德优化算法(AOA)在求解优化问题时存在全局探索能力弱、收敛速度慢和求解精度低等问题,提出一种多策略阿基米德优化算法(MSAOA)。首先,利用变区间初始化策略,使得初始种群尽可能地靠近全局最优解,从而提高初始解的质量;其次,提出黄金莱维引导机制,以提高算法在迭代后期的种群多样性;最后,在维持种群多样性的前提下,引入自适应波长算子,以达到提高算法搜索效率的目的。将所提算法与均衡器算法(EO)、正余弦算法(SCA)以及灰狼优化算法(GWO)在20个基准测试函数上进行比较实验。实验结果表明,所提算法具有更高的寻优精度和收敛速度,并将所提算法应用于4个机械设计实例中,再次验证了所提算法的有效性和优越性。