摘要
姿态变化和光照干扰对于人脸识别的准确率和效率有很大影响。针对这一问题,文中采用结合Gabor特征和SIFT特征的人脸识别方法进行识别,提取一幅人脸图像的多个方向和多个尺度的Gabor特征,并将提取得到的Gabor特征图像进行分块。对分块后的子图像进行提取SIFT特征的操作,将得到的Gabor特征全部SIFT向量级联作为最终特征向量。使用主成分分析方法对得到的最终特征向量进行降维处理,随后使用最小二乘支持向量机进行训练识别。在FERET人脸数据库中进行的实验结果表明,相对于传统单一的人脸识别方法,利用本文方法在姿态变化和光照干扰情况下对人脸识别的准确率达到98.1%,证明了新算法的有效性。
- 单位