摘要

为了解决自注意力机制的注意力图计算复杂度高、内存占用大等问题,同时提高语义分割网络的性能,提出了一种基于注意力编码的轻量化网络。该网络用自适应位置注意力模块和全局注意力上采样模块分别对长距离语义依赖关系进行编码和解码,在计算注意力图时先用自适应位置注意力模块排除无用的基组,再获取上下文信息;全局注意力上采样模块用全局上下文信息引导低层特征重构高分辨率图像。实验结果表明,本网络在PASCAL VOC2012验证集上的分割精度达到84.9%,相比分割精度相近的双路注意力网络,本网络的每秒浮点运算次数降低了16.9%,占用的GPU内存减少了12.9%。