摘要
The sensitive and specific detection of key molecules and biological micro/nanoparticles in complex biological systems is of great significance for understanding biological processes at multiple levels and scales, uncovering the mechanisms of disease onset and development, and exploring novel biomarkers. Microfluidic biosensors with advantages of microfluidics and biosensing have made significant progress in the precise detection of biological samples with small volumes. Recent years, thermomicrofluidic biosensing that combines thermophoretic migration in a temperature gradient and homogenous signal amplification strategies has realized rapid, sensitive, in situ detection of biomolecules and biological micro/nanoparticles in complex biological systems. Different thermomicrofluidic biosensing strategies, including microscale thermophoresis (MST), thermophoresis-convection coupling, thermophoresis-diffusiophoresis coupling, and thermophoresis-electrophoresis coupling were presented. The fundamentals, features, and applications of these strategies in detecting biomolecules (protein, nucleic acids, etc.) and biological micro/nanoparticles (extracellular vesicles, viral particles, cells, etc.) were summarized. The challenge and future directions for the application of thermomicrofluidic sensing in biomedical detection were discussed.
- 单位