摘要

神经网络技术被广泛应用于网络安全领域,在入侵检测中能够实现网络攻击的主动检测和攻击分类.然而随着恶意攻击的不断演化,神经网络技术存在的弊端日益显现.针对BP神经网络在入侵检测过程中存在的初始值随机性较大以及易陷入局部最优的问题,本文提出一种改进灰狼算法优化BP神经网络的入侵检测模型(IGWO-BP).首先,使用混沌映射初始化种群、设计非线性收敛因子以及动态权重策略对传统灰狼算法进行改进,并以此优化BP神经网络的初始权值和阈值,并运用改进BP神经网络对网络安全数据集进行实际检测.实验结果表明,IGWO-BP模型在NSL-KDD和UNSW-NB15数据集上取得了较优的检测结果,与其它现有模型相比性能也有较大提升.