摘要

自适应波束形成技术广泛应用于雷达领域的旁瓣抗干扰中。当回波数据量增多时,传统的波束形成算法无法进行快速处理,而应用深度神经网络模型通过数据的预训练则可以快速地进行波束形成,因此根据波束形成原理设计深度神经网络,并利用知识蒸馏的方式对深度神经网络进行压缩,使压缩后的模型既有原始模型良好的泛化性能而且又有更快的计算速度。仿真结果表明,相比于传统的LMS算法,在实验环境下,未经模型压缩的深度神经网络自适应波束形成算法的计算速度提高了约7倍,基于模型压缩的深度神经网络自适应波束形成算法的计算速度提高了约20倍。

  • 单位
    北京遥测技术研究所