摘要
由于红外焦平面探测器受到制造工艺等限制,图像不可避免地会存在非均匀性。传统神经网络算法会留下“鬼影”的问题,本文改进传统神经网络算法,利用引导滤波图像作为期望模板,防止图像的边缘被滤波器平滑。当场景运动时,通过时域迭代的策略来不断进行非均匀性校正参数的更新。为了抑制算法中常见的鬼影现象,设计了基于空域局部方差和时域场景变化率相结合的自适应学习率,利用前后的校正参数自适应调整阈值。实验仿真表明,本文所提的算法相比于传统算法均方根误差下降45.45%左右,可以在校正图像非均匀性的同时很好地抑制“鬼影”现象。
-
单位中国空空导弹研究院