摘要
针对传统的同时定位与建图(SLAM)算法在动态环境中会降低自身运动估计的精确性以及系统鲁棒性的问题,提出一种适用于动态环境的视觉惯性SLAM算法——DVI-SLAM(dynamicvisualinertial SLAM)。根据对极几何约束检测并去掉动态特征,利用更加精确的静态特征进行状态估计;添加视觉信息自适应权重因子,提高系统的鲁棒性。改进的SLAM算法在公开的视觉惯性数据集TUM-VI上进行相关实验,实验结果与VINS-MONO相比在高动态场景中的定位精度平均提高了47.34%。
-
单位电子信息工程学院; 长春理工大学