摘要

针对风电功率的长记忆、大波动性特点,提出了一种短期风电功率组合预测算法。利用集合经验模式分解算法在风电功率序列分解过程中添加成对的正负噪声分量,得到的不同复杂度的子序列,提高信号重构精度和分解速度。风电功率子序列的线性分量应用自回归分数积分移动平均模型进行预测,风电功率子序列的非线性分量利用自回归分数积分移动平均模型的残差序列训练优化后的支持向量机模型来进行预测,最后组合得到风电功率预测结果。通过对国内某风电场风电功率数据进行验证,表明该组合预测模型的预测精度更高,且模型具有更好的适应性。