摘要

针对发芽马铃薯在线检测需求,提出使用轻量级卷积神经网络对发芽薯进行检测。首先将获取的马铃薯样本基于分级线进行图像采集,经过数据增强扩充样本。搭建Shuffle-Net轻量级卷积神经网络,对比了不同学习率与学习率衰减策略对模型的影响。试验发现,当学习率为0.001,衰减策略为W-EP时表现最佳,发芽薯与健康薯的总体识别准确率为97.8%,单个样本识别时间为0.14 s,模型内存占用量为5.2 MB。对实验结果进行评价,查准率为98.0%,查全率为97.1%,特异性为98.4%,调和均值为97.5%。选择VGG11、Alex-Net、Res-Net101模型与本文模型进行对比,发现本文模型识别准确率较VGG11与Alex-Net有大幅度提升,单个样本识别速度较Res-Net101提高5倍、较VGG11提高近7倍,模型体量较VGG11、Alex-Net、Res-Net101大幅度减少。将模型内部卷积进行了可视化分析并对结果进行了误判分析,发现当芽体颜色暗、较短且处于薯体边缘的情况下,会造成误判。由此可得本实验模型实现了发芽薯准确、有效的识别,同时还具有识别速度快、体量小、移植性强的优点,可为农产品外部无损检测分级提供理论支撑。