摘要
传统方法采用单一的模型开展大坝位移性态预警,虚假警报频次较高。为提升预警结果的可靠性,提出多模型联合预警方法。以水位-温度-时效模型(hydraulic-season-time, HST)、自回归滑动平均模型(autoregressive moving average, ARMA)为研究对象,采用核密度估计探讨了两类模型残差的一维分布规律。在此基础上,对两类模型的联合残差进行了频率分析,发现了联合残差非尾部弱相关、尾部强相关的分布特征。最后采用copula函数对HST-ARMA联合残差进行拟合,得到了联合分布函数,实现了大坝位移性态的多模型联合预警。算例表明:若采用单一的HST模型或ARMA模型预警,受建模序列特征以及模型结构特征的影响,虚假警报发生率高达23.17%~27.94%。而采用HST-ARMA联合预警,能够充分结合各模型的优势,虚假警报发生率可降至0.00%~0.63%。多模型联合预警能够有效降低虚假警报的发生频次,预警结果能够更加真实地反映大坝位移性态,可为提升大坝安全管理水平提供参考。
- 单位