摘要

目的跨年龄素描—照片转换旨在根据面部素描图像合成同一人物不同年龄阶段的面部照片图像。该任务在公共安全和数字娱乐等领域具有广泛的应用价值,然而由于配对样本难以收集和人脸老化机制复杂等原因,目前研究较少。针对此情况,提出一种基于双重对偶生成对抗网络(double dual generative adversarial networks,D-DualGANs)的跨年龄素描—照片转换方法。方法该网络通过设置4个生成器和4个判别器,以对抗训练的方式,分别学习素描到照片、源年龄组到目标年龄组的正向及反向映射。使素描图像与照片图像的生成过程相结合,老化图像与退龄图像的生成过程相结合,分别实现图像风格属性和年龄属性上的对偶。并增加重构身份损失和完全重构损失以约束图像生成。最终使输入的来自不同年龄组的素描图像和照片图像,分别转换成对方年龄组下的照片和素描。结果为香港中文大学面部素描数据集(Chinese University of Hong Kong (CUHK) face sketch database,CUFS)和香港中文大学面部素描人脸识别技术数据集(CUHK face sketch face recognition technology database,CUFSF)的图像制作对应的年龄标签,并依据标签将图像分成3个年龄组,共训练6个D-DualGANs模型以实现3个年龄组图像之间的两两转换。同非端到端的方法相比,本文方法生成图像的变形和噪声更小,且年龄平均绝对误差(mean absolute error,MAE)更低,与原图像相似度的投票对比表明11~30素描与31~50照片的转换效果最好。结论双重对偶生成对抗网络可以同时转换输入图像的年龄和风格属性,且生成的图像有效保留了原图像的身份特征,有效解决了图像跨风格且跨年龄的转换问题。