摘要

参考作物蒸散量(Reference Evapotranspiration, ET0)的准确估算对区域水资源管理和分配、流域水量平衡以及气候变化等研究具有重要作用。新疆地处我国西北干旱地区,水资源供需矛盾尖锐,精确估算该地区的ET0有助于其科学合理地调配水资源,缓解水资源供需压力。FAO推荐的Penman-Monteith法是计算ET0的标准方法,但该方法需要多项气象因子,而新疆地区气象站点较少且分布不均,精确完备的气象数据在新疆大部分区域难以获取。因此,如何使用有限气象因子获取高精度的ET0在新疆地区备受关注。本文基于中国气象数据网提供的新疆地区1980—2019年的地面气候资料日值数据集,在日和月尺度下,通过对最高气温Tmax、最低气温Tmin、平均气温Tavg、风速U2、相对湿度RH和日照时数n共6项气象因子进行敏感性分析,形成不同的气象因子组合;然后使用SVM、RF、GBDT和ELM 4种机器学习算法,以FAO-56 PM计算值为标准值,对新疆地区的ET0进行了拟合建模;最后,从拟合精度、稳定性和计算代价3个方面对模型进行评价。研究表明:①在新疆地区,ET0对RH、Tmax和U2敏感系数级别为高,平均敏感系数分别为-0.516、0.283和0.266;n为中等,平均敏感系数为0.124;Tmin和Tavg为低,平均敏感系数分别为-0.016和-0.003;②在日尺度,各算法在RH、Tmax、U2和n这4项气象因子为输入时精度较高(RMSE<0.5 mm/day,R2>0.95),可对ET0进行精确估算;在月尺度,各算法使用RH、Tmax和U2这3项参数便可对ET0进行精确估算。SVM和GBDT这2种算法在日尺度和月尺度都有较好的适用性,可在相应尺度下使用较少气象因子替代FAO-56 PM公式对ET0进行估算。