摘要

基于CNN+LSTM混合神经网络构建故障时间序列预测模型,利用某型号地铁闸机扇门机构的故障数据进行实例分析,并与ARIMA、CNN和LSTM 3种单一预测模型对比。结果表明:CNN+LSTM混合神经网络模型的预测准确性较高,具有良好应用前景,研究成果可用于支持地铁闸机维修计划的制定和优化。