摘要

以硫氰化钾(KSCN)为内标物,利用主成分分析(PCA)降维,利用支持向量机(SVM)算法建立定量分析模型——支持向量回归(SVR),并结合网格搜索(GS)、遗传算法(GA)和粒子群优化算法(PSO)三种参数优化方法,实现了芘、菲单一溶液和混合溶液的定量分析。研究结果表明:以KSCN为内标物,提高了定量分析结果的准确性;利用PCA降维提高了建模速度;三种优化模型对芘预测的平均相对误差(ARE)在7.6%以内,对菲预测的ARE在11.3%以内;三种参数优化方法对同一物质的预测结果相近,但GS的运算速度最快;综合考虑误差和分析速度后,采用GS-SVR模型获得了菲、芘混合溶液的最佳结果。表面增强拉曼光谱(SERS)技术结合SVM算法有望实现多环芳烃的定量分析。