摘要
传统的信号滤波方法不能有效的融合多传感器测量数据,或者融合中失去过去信号状态信息。针对这一问题,提出了扩展卡尔曼滤波(Extended kalman filtering,EKF)与互补滤波融合的信号处理策略。借助STM32微处理器采集MPU9250惯性测量传感器的原始数据,运用多传感器信息融合的处理算法,比较了互补滤波姿态解算结果和对互补滤波过程中所得的四元数运用EKF矫正后进行姿态解算的结果,以及互补滤波解算的欧拉角运用EKF矫正后的姿态数据。通过实验中3种解算结果与理论值的对比,得出结论:采用互补滤波会存在一定超调量,且结果波动较大,存在较大的噪声,对互补滤波过程中的四元数进行EKF滤波虽能降低解算结果的噪声,但仍存在超调量。而应用EKF矫正互补滤波解算出的欧拉角能同时解决超调量和降低噪声误差,抑制了随机波动,起到了更好的解算效果。
-
单位机械传动国家重点实验室; 重庆大学