摘要

研究了具有高阶色散项和立方-五次非线性项的薛定谔方程(NLSE)在扰动下孤立波解的保持性。通过行波变换将NLSE转化为平面动力系统,由Melnikov方法得到混沌阈值,通过分岔图、最大Lyapunov指数和Poincaré截面图验证了该系统存在Smale马蹄意义下的混沌,从而在参数选择时规避该区域来获得孤立波的保持区域。

全文