摘要

现有的人体姿态识别方案大多数是从单一的角度来考察人体的姿态特征,但是仅采用距离像很难体现人体关节的位置信息,仅提取微多普勒特征有时会覆盖掉径向速度不明显的特征。为此,本文首先利用慢时间-距离像和慢时间-微多普勒谱图构建出人体姿态的三维张量数据集,扩展了人体姿态的特征维度,然后采用改进型瓶颈残差模块构成的神经网络提高了人体姿态的识别率。实验结果表明,通过对4名受试者的8种姿态进行训练和测试,该网络对人体姿态的三维张量数据集的识别率可达97.78%,相比于单一特征数据集的识别率提高了4%~7%。