摘要

三维物体识别是计算机视觉领域近年来的研究热点,其在自动驾驶、医学影像处理等方面具有重要的应用前景。针对三维物体的体素表达形式,特征重组卷积神经网络VFRN使用了直接连接同一单元中不相邻的卷积层的短连接结构。网络通过独特的特征重组方式,复用并融合多维特征,提高特征表达能力,以充分提取物体结构特征。同时,网络的短连接结构有利于梯度信息的传播,加之小卷积核和全局均值池化的使用,进一步提高了网络的泛化能力,降低了网络模型的参数量和训练难度。ModelNet数据集上的实验表明,VFRN克服了体素数据分辨率低和纹理缺失的问题,使用较少的参数取得了优于现有方法的识别准确率。