摘要

为了在有效地检测复杂场景下红外弱小目标的同时保持较低虚警率,在满足算法实现实时性的前提下,提出一种基于引导滤波和分块自适应阈值的单帧红外弱小目标检测。首先,为缓解边缘杂波干扰,采用具有保边特性的引导滤波对图像进行背景估计;然后,利用弱小目标具备的局部灰度最大特性,提出基于软阈值非极大值抑制的九宫格滤波计算目标的概率。通过加权的方式进一步剔除背景,抑制结果中不满足目标特性的区域;最后,针对复杂场景目标检测虚警率和漏检率高的问题,提出一种分块自适应阈值分割方法提取候选目标。实验结果表明,在公开数据集上与Top-Hat、LCM和Max-Median等经典方法相比,所提方法性能优于其他方法,恒虚警下不同复杂度场景的召回率分别达到87.97%、84.93%和86.22%,可有效抑制背景,增强目标信号,提高红外弱小目标检测的召回率,且具有更好的场景鲁棒性。

  • 单位
    华北光电技术研究所