摘要
光伏发电功率的准确预测对电网的稳定运行具有重要的意义。针对深度学习训练耗时长和宽度学习特征提取能力弱等问题,将门控循环单元(GRU)与宽度学习系统(BLS)相融合,提出了用于超短期光伏发电功率预测的GRU-BLS模型。先使用GRU训练序列样本,再将所学习到的隐特征作为新的输入特征,最后在BLS中构造特征节点和增强节点以形成最终的特征。所建立的模型在保留深度学习高预测精度的前提下,有效地缩短了模型的训练时间。在实际的光伏发电数据集上进行实验,评估所提模型在不同季节和天气类型下的性能。实验结果表明:与长短期记忆(LSTM),GRU,BLS和LSTM-BLS等模型相比,GRU-BLS的RMSE值降低了23.89%~75.68%,且TIC值和MAPE值也得到了显著改善。
- 单位