摘要
为保护尺度空间边缘和角点信息,提高特征匹配算法的可靠性,提出一种Sub-Window尺度空间的Attention-HardNet特征匹配算法。该算法通过Sub-window box filter构建尺度空间来充分保留尺度空间图像边缘及角点信息;使用FAST算法提取尺度空间特征点来提高特征点提取速度,再利用圆形非极大值抑制算法对其进行优化,提高准确率;对HardNet特征提取网络添加SENet注意力机制,构成Attention-HardNet,提取鲁棒性更强的128维浮点型特征描述符,最后利用L2距离衡量不同描述符的相似性,完成图像特征点匹配。在Oxford数据集上对匹配算法抗尺度、压缩、光照等性能进行测试,由测试结果可以看出本文算法相较于常用匹配算法,匹配正确率得到较大提升,相较于L2net、HardNet等深度学习方法,匹配正确率提高3%左右,速度约提高10%。
- 单位