摘要

多分类器系统作为混合智能系统的分支,集成了具有多样性的分类器集合,使整体得到更优的分类性能.结果融合是该领域中的一个重要问题,在相同分类器成员下,好的融合策略可以有效提升系统整体的分类正确率.随着模型安全性得到重视,传统融合策略可解释性差的问题凸显.本文基于心理学中的知识线记忆理论进行建模,参考人类决策过程,提出了一种拥有较好可解释性的启发式多分类器集成算法,称为知识线集成算法.该算法模拟人类学习与推断的行为,组织多分类器结果的融合.在训练中,模型收集给定分类器集合的不同子集,构建不同特征空间到解空间的映射,构成知识线.在推断时,模型启发式地激活知识线,进行选择性结果集成,得到推断结果.知识线集成使用样本驱动的模式,易于进行中间过程与最终结果的分析.以决策树作为分类器的实验表明,在相同的决策树集合下,知识线集成算法分类正确率与随机森林相仿.在此基础之上,知识线集成算法可量化问题不同粒度下的难易程度,且在推断时能提供相关训练样本作为依据.