摘要

以凉山州安宁河流域129个乡镇的泥石流危险性区划资料为依据,随机选取总样本数的2/3和1/2作为训练样本,建立不同数量训练样本下安宁河流域泥石流危险性区划的多分类SVM模型,进行以乡镇为单元的区域泥石流危险性评价研究。评价结果表明,SVM模型的预测精度随着训练样本数量的增加而提高;2个SVM模型对测试样本的预测准确率均高于相应的BP神经网络模型,对训练样本的回判准确率高于或接近于BP神经网络模型。因此,支持向量机方法是一种比神经网络方法具有更优精度和更强泛化性能的新机器学习方法,在泥石流危险性评价实践中具有十分广阔的应用前景和推广应用价值。

全文