基于图注意力网络的舆情演变预测研究

作者:彭思琪; 周安民*; 廖珊; 周雨婷; 刘德辉; 文雅
来源:四川大学学报(自然科学版), 2022, 59(01): 109-116.
DOI:10.19907/j.0490-6756.2022.013004

摘要

要想实现对纷繁复杂的网络舆情的监控和管理,预防舆情危机的突发状况,一个关键的解决方案就是对网络舆情事件的发展趋势进行预测.然而,目前针对舆情演变预测的研究工作却十分有限,尤其是社交网络环境中的舆情演变预测.本文将评论文本的情感值作为演变预测的对象,利用情感词和舆情事件中评论文本的语义相似度,为事件发展的每个时间段都构造一个对应的图结构,再结合门控循环单元(GRU)与图注意力网络(GAT)对情感时间序列进行预测.为了验证模型的有效性,本文以Twitter中弗洛伊德事件的评论文本作为数据集,开展与基于图卷积网络的预测模型的对比实验.实验结果表明,本文提出模型的R2决定系数为0.569,平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)均小于基于图卷积网络的预测模型,能较好地实现舆情事件中评论文本的情感演变预测.

全文