摘要
道路场景因其结构的多样性、纹理变化的复杂性和自然曝光的不稳定性,使得传统基于道路分割的道路检测方法大多存在信息冗余,并且存在边界丢失、模糊等质量问题.本文首先在道路图像上使用Meanshift均值漂移算法,通过空间内的概率密度呈梯形上升去寻找局部最优,并搜索属于同一模点的像素然后生成获得超像素块.然后利用Meanshift算法获得的聚类超像素块进行多种子点区域生长,规范生长规则,克服不能得到封闭边界的缺陷,改进道路图像的分割效果.实验结果表明,本文提出的模型适用性强,相比于传统方法有效地提升了分割准确性和实时性,可准确识别出图像中的道路信息,确保车辆能够行驶在可行驶区域上.
-
单位北京交通大学; 交通运输学院