摘要

目前的节能照明控制算法仍有陷入局部最优的问题。为了寻求全局最优解,提高室内照明的节能效果,设计一种遗传模拟退火算法对照明系统的控制参数进行优化求解。该算法通过在遗传操作后对优秀个体进行模拟退火处理,增强了算法的局部搜索能力。根据迭代的次数和种群的适应度对遗传概率进行自适应调节,使得算法在前期丰富种群多样性,避免算法“早熟”。提出基于人工神经网络的照度模型来计算室内照度分布,对照明舒适度进行评估,为构造优化算法的适应函数提供了依据。通过仿真实验,在本文介绍的照明场景应用遗传模拟退火算法,并与传统粒子群算法和遗传算法进行比较,其照明节能性能分别高出5.30%和13.61%。