摘要
在对2017年A地地区气象数据进行对比分析后发现影响A地地区霾等级的主要因素有以下七个:气温、气压、相对湿度、露点温度、地面U风、地面V风以及PM2.5浓度。上述的七项主要因素是影响A地区霾等级的属性特征,将霾的等级划分当作标志量,以此来构建样本集合,再用KNN数据挖掘算法来构建划分霾等级的预报分类器,从而进行试验。得到如下结论:当K=3时该分类器的预报效果最佳,准确度高达88.2%。基于该算法构建的KNN模型预报无霾时准确度很高,达91.8%,且对于雾霾的空报率也较低,但对霾等级的预报精确度还有待改善。
- 单位